Proc. Indian Acad. Sci. (*Chem. Sci.*), Vol. 113, No. 1, February 2001, pp 2933 $©$ Indian Academy of Sciences

Synthesis of cyano-bridged bimetallic complexes of *h* **5 -indenyl ruthenium(II): Characterization and spectroscopic studies**

K MOHAN RAO* and E K RYMMAI

Department of Chemistry, North Eastern Hill University, Shillong 793 022, India

e-mail: mrkollipara@hotmail.com

MS received 7 September 2000; revised 13 November 2000

Abstract. Reactions of the cyanide complexes of the type $[(Ind)Ru(PPh₃)₂CN]$ (1), [(Ind)Ru(dppe)CN] (2), [(Cp)Ru(PPh₃)₂CN] (3), with the corresponding chloro complexes [(Ind)Ru(PPh³)2Cl] (**4**), [(Ind)Ru(dppe)Cl] (**5**), [(Cp)Ru(PPh³)2Cl] (**6**), in the presence of NH_4PF_6 salt give homometallic cyano-bridged compounds of the type $[(Ind)(PPh₃)₂Ru-CN-Ru(PPh₃)₂(Cp)]PF₆ (7), [(Ind)(PPh₃)₂Ru-CN-Ru(PPh₃)₂(Ind)]$ PF_6 where Ind = indenyl, \mathbf{h}^3 -C₉H₇, (8), [(Cp)(PPh₃)₂Ru–CN–Ru(dppe)(Ind)]PF₆, $\text{dppe} = (\text{Ph}_2 \text{PCH}_2 \text{CH}_2 \text{PPh}_2)$ (9), $[(\text{Ind}(\text{dppe}) \text{Ru}-\text{CN}-\text{Ru}(\text{PPh}_3)_2(\text{Ind}) \text{PF}_6$ (10) and $[(Ind)(dppe)Ru-CN-Ru(PPh₃)₂(Cp)]PF₆ (11) respectively. Reaction of complex 3$ with [(p-cymene)RuCl₂]₂ dimer gave a mixed dimeric complex [(Cp)Ru(PPh₃)₂-CN-RuCl₂(*p*-cymene)] (**12**). All these complexes have been characterized by IR, ¹H, ¹³C and $31P$ NMR spectroscopy and C, H, N analyses.

Keywords. Cyano-bridged; *h* 5 -indenyl; bimetallic complexes; ruthenium.

1. Introduction

Linear cyanide-bridged bimetallic complexes of the type M–CN–M have been extensively studied ¹⁻⁶. Cyanide-bridged, dinuclear transition metal compounds are widely used in the areas of electron delocalization and charge transfer studies $7-11$.

In our earlier work, we have studied the nucleophilic character of cyanide group in [CpRu(PPh₃)₂CN] complexes and synthesized various cyanide-bridged bimetallic complexes $2,3,12,13$. As an extension of this work, we have chosen [(Ind)RuL₂CN] complexes where we expect the cyanide group to exhibit more nucleophilic character because of high electron density on the metal in indenyl ruthenium complex compared to the cyclopentadienyl analogue 14 . We wish to report here the reactions of [(Ind)RuL₂CN] with various halide complexes of the type $[(Ind)RuL_2Cl]$, $[(Cp)RuL_2Cl]$ etc.

2. Experimental

Solvents were dried by standard methods. Infrared spectra were recorded as KBr pellets using a Perkin–Elmer model 983 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF 300 spectrometer and referenced to external tetramethylsilane. ³¹P {¹H} NMR chemical shifts are reported relative to H_3PO_4 (85%). In the NMR spectra,

^{*}For correspondence

30 *K Mohan Rao and E K Rymmai*

chemical shifts are expressed with reference to TMS $(^1H$ and ¹³C). Coupling constants, *J*, are given in hertz. Elemental analyses were performed by the service center, Regional Sophisticated Instrumentation Centre, NEHU, Shillong.

[(Ind)RuL₂CN]¹⁵, [(Ind)RuL₂Cl]¹⁵, [(\mathbf{h}^6 -p-cymene)RuCl₂]₂¹⁶ and [(Cp)RuL₂CN]¹⁷ were prepared by literature methods. Rutheniumtrichloride trihydrate was obtained from Arrora Matthey (P) Limited and used as such.

2.1 *Preparation of complexes*

A typical reaction procedure was as follows for complexes $[(Ar)L₂Ru-CN \text{RuL}_2(\text{Ar}^1)$]PF₆, **7–11**.

A suspension of $[(Ind)RuL_2(CN)]$ (0⋅5 mmol), $[(Ind)RuL'_2(C1)]$ (0⋅5 mmol), or $[(Cp)Ru(PPh₃)(Cl)]$ (0⋅5 mmol) (L = PPh₃ or L₂ = dppe) and NH₄PF₆ in methanol 20 ml was refluxed for 2 h. The initially light brown suspension turned into yellowish solution, which on cooling some of the complex was precipitated out. The yellow complex was separated out by filtration. The filtrate was concentrated to dryness. The compound was dissolved in dichloromethane and filtered. Addition of diethylether to the filtrate yielded yellowish precipitate, which was washed with diethylether and dried.

2.2 *Preparation of [(Cp)(PPh3)2Ru–m–CN–Ru(h 6 -p-cymene)Cl2]*

The complex $[(Cp)Ru(PPh₃)₂(CN)]$ (100 mg, 0⋅139 mmol) suspended in methanol (20 ml) was heated under reflux with $[(\mathbf{h}^6$ -*p*-cymene)RuCl₂ $]_2$ (30 mg, 0⋅139 mmol) for four hours. The yellow orange solution was evaporated to dryness on a water bath and the residue was dissolved in dichloromethane (5 ml). Addition of diethylether to this solution resulted in an orange solid. This was filtered and washed with diethylether and dried in vacuum.

3. Results and discussion

Cyanide-bridged complexes are prepared by treatment of cyanide complexes with the corresponding chloride complexes in presence of NH_4PF_6 in methanol. Chloride complexes dissociate in methanol and form solvated cations¹² of the type $[(\text{Ind})\text{RuL}_2(\text{sol})]^+$. These cations act as electrophiles towards the cyanide complexes. The reactions take place very smoothly as below to give the products in good yield.

$$
[(Ind)RuL2CN] + [(Ind)RuL2Cl] + NH4PF6 \rightarrow [(Ind)RuL2-CN-RuL2(Ind)]PF6, (1)
$$

Ind = indenyl, L₂ = (PPh₃)₂, dppe = (Ph₂PCH₂CH₂PPh₂)
[(Ind)RuL₂CN] + [(Cp)RuL₂Cl] + NH₄PF₆ \rightarrow

 $[(Ind)RuL₂-CN-RuL₂(Cp)]PF₆$. (2)

The crude products are purified by passing through a column (silica gel) using dichloromethane as eluent to yield the pure complexes, which are yellow in colour. These have been characterized by their \mathbf{n}_{N} stretching mode in infrared, which shifts to higher energies by about $5-25$ cm⁻¹ compared to the corresponding cyanide complexes^{2,3,18,19}, owing to the formation of a cyanide bridge. The \mathbf{r}_{N} band shift to higher energy is explained ²⁰ in terms of removal of electron density from the lowest filled CN $\sigma^*(s)$ orbital on the co-ordinating nitrogen of the cyanide group. Moreover, on bridge formation, there is simple mechanical constraint on CN motion imposed by the presence of the second metal centre which makes n_{CN} shift to higher frequency²¹. This shift to higher frequency on bridging has also been explained on the basis of force field arguments 22 . The complexes have also shown characteristic IR bands for triphenylphosphine groups in the range of 1480, 1430, 1090, 740, 690, 520 cm⁻¹ and a strong band is also observed for n_{PF} at 840 cm⁻¹.

Complex **12** is formed by reaction of complex **3** $[(Cp)RuL_2CN]$ and $[(p-Cp)RuL_2CN]$ cymene) $RuCl₂$]₂ dimer in the ratio of 2:1 in ethanol as follows.

$$
[(Cp)RuL2CN] + [(p-cymene)RuCl2]2 \rightarrow [(Cp)RuL2-C\equiv N-RuCl2(p-cymene)].
$$
\n(3)

Complex 12 exhibits a strong stretching band for n_{CN} at 2112 cm⁻¹, indicating the shift of the band position by 44 cm^{-1} to higher energy compared to the starting cyanide complex [(Cp)RuL₂CN] (3), where \mathbf{n}_{CN} is at 2068 cm⁻¹. The ¹H NMR spectrum of the complex has shown characteristic peaks for the cyclopentadienyl and *p*-cymene groups (table 1, figure 1).

The proton NMR spectra of complexes **7**, **9**, **11** (table 1) show sharp signals due to Cp around *d* 4.0 ppm, and a set of indenyl peaks around *d* 4⋅3 ppm (doublet) and *d* 5.0 ppm (triplet). In the case of complexes **8**, **10** we would expect two sets of indenyl proton peaks in the range 4 to 5 ppm, but we observe broad multiplets instead of two doublets and two triplets for two indenyl groups. All these complexes exhibit sharp signals in ${}^{31}P$ { ${}^{1}H$ } NMR spectra for triphenylphosphine and dppe ligands in the region of 47 and 85 ppm respectively (table 1) confirming the presence of these ligands. Signals

Figure 1. ¹H NMR spectrum of complex $[(Cp)(PPh_3)_2Ru$ -**m**-CN-Ru(\mathbf{h}^6 -p-cymene)- $Cl₂$] in CDCl₃.

KBr discs, $^{\rm b}$ CDCl₃; $^{\rm c}$ ¹³C

NMR signal of the bridging cyano group was not observed

Table 1. Spectral data of cyanide bridged complexes: [(Ar)L₂Ru-C $N-RuL'_{2}(Ar)$ ¹)]PF₆.

due to PF₆-counter ion are observed as a septet around **d** 137 ppm in the ³¹P $\{^1H\}$ NMR spectra of these complexes. In the 13 C NMR spectra signals due to carbons of Cp, indenyl and phenyl groups of phosphines are also observed in the range of 90, 70, 111 and 127– 138 ppm respectively (table 1).

4. Conclusions

Complexes **7–12** were isolated successfully by reacting cyanide complexes **1–3** with chloride complexes **4–6** in methanol. The reactivity of cyanide complexes with mild electrophiles viz. solvated cations indicates the strong electron donor capability of cyanide group in cyanide complexes. On the basis of spectral data, the molecular formula proposed for these complexes is: $[(Ar)L₂Ru-CN-Ru(Ar')L'₂]PF₆.$

Acknowledgement

We thank the Department of Science and Technology, New Delhi for financial support.

References

- 1. Rigo P and Turco A 1974 *Coord. Chem. Rev.* **13** 133
- 2. Davies J A, Hartley F R, Murray S G and Pierce-Butler M A 1983 *J. Chem. Soc., Dalton Trans*. 1305; (b) Baird G J, Davies S G, Moon S D, Simpson S J and Jones R H 1985 *J. Chem. Soc., Dalton Trans*. 1479
- 3. Mohan Rao K, Prasad R and Agarwala U C 1987 *Synth. React. Inorg. Met.-Org. Chem*. **17** 469
- 4. Deeming A J and Proud G 1988 *J. Chem. Soc., Dalton Trans*. 2475
- 5. Darensbourg D J, Yoder J C, Holtcamp M W, Klausmeyer K K and Reibenspies J H 1996 *Inorg. Chem.* **35** 4764
- 6. Ramsharan Singh and Dikshit S K 1993 *Polyhedron* **12** 1697
- 7. Zhou M, Plenning B W, Steiger J, Van Engen D and Bocarsly A B 1990 *Inorg. Chem.* **29** 2456
- 8. Agnus Y, Gisselbrecht J P, Louis R and Metz B 1989 *J. Am. Chem. Soc*. **111** 1494
- 9. Burewiez A and Haim A 1988 *Inorg. Chem.* **27** 1611
- 10. Chrisstofides A, Connelly N G, Lawson H J and Loyns A 1990 *J. Chem. Soc., Chem. Commun*. 597
- 11. Scandola F, Argazzi R, Bignozzi C A, Chiorboli C, Indelli M T and Rampe N A 1993 *Coord. Chem. Rev.* **125** 283
- 12. Haines R J and du Preez A L 1975 *J. Organomet. Chem.* **84** 357
- 13. Baird G J and Davis S G 1984 *J. Organomet. Chem.* **262** 215
- 14. Gamasa P M, Gimino J, Bernado C G and Martin-Vaca B M 1996 *Organometallics* **15** 302
- 15. Oro L A, Ciriano M A and Campo M 1985 *J. Organomet. Chem.* **289** 117
- 16. Bennet M A, Huang T N, Matheson T W and Smith A K 1982 *Inorg. Syn*. **21** 74
- 17. Blackmore T, Bruce M I and Stone F G A 1971 *J. Chem. Soc. A* 2376
- 18. Purcell K F 1967 *J. Am. Chem. Soc*. **89** 247, 1639
- 19. Nakamoto K 1986 *Infrared and Raman spectra of inorganic and coordination compounds* 4th edn (New York: John Wiley & Sons) p. 278 and references therein
- 20. Swanson B I 1971 *Inorg. Chem.* **15** 253
- 21. Bignozzi C A, Argazzi R, Schoonover J R, Gardon K C, Dyer R B and Scandola F 1992 *Inorg. Chem.* **31** 5260
- 22. Dows D A, Haim A and Wilmarth W K 1961 *J. Inorg. Nucl. Chem.* **21** 33